# The Macroeconomic Impact of NAFTA Termination

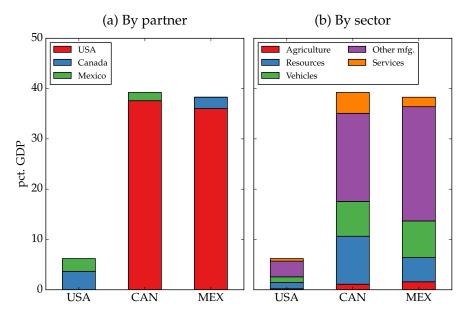
Joseph B. Steinberg University of Toronto

April 24, 2019

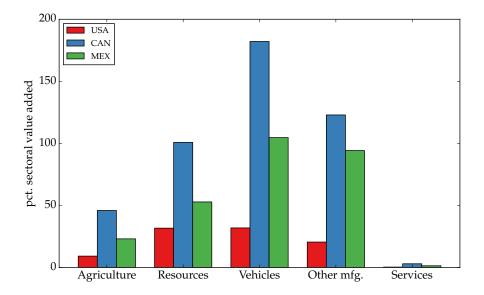
# **Motivation**



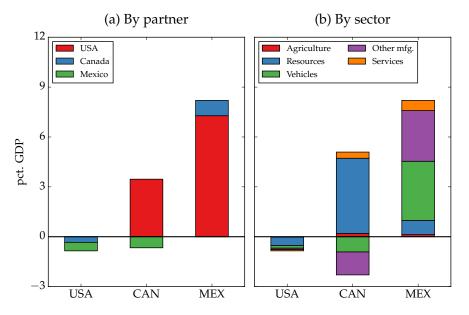
**Donald J. Trump** 




We are in the NAFTA (worst trade deal ever made) renegotiation process with Mexico & Canada.Both being very difficult,may have to terminate?


6:51 AM - 27 Aug 2017




# Gross NAFTA trade flows (WIOD, 2014)



## NAFTA intermediate input trade (WIOD, 2014)



#### NAFTA trade imbalances (WIOD, 2014)



## Introduction

Since NAFTA's inception, US, Canada, and Mexico's economies have become heavily intertwined

- Mexico and Canada trade significantly more with US than with any other country; US trades more only with China
- Extensive regional supply chains, particularly in transportation equipment sector
- But also trade imbalances: US trade deficits with Canada and Mexico

Trump administration forced renegotiation, threatened to terminate NAFTA if replacement not satisfactory

Future of negotiated replacement, USMCA, still uncertain

#### What would happen if NAFTA was terminated?

Toward a dynamic, quantitative analysis of trade reforms

Dynamic framework needed to evaluate whether NAFTA termination would reduce regional trade imbalances

Investment, int'l *K* flows, firm-level extensive margin dynamics affect both timing and extent of effects of trade reforms

- Ravikumar et al. (2018), Alessandria et al. (various)
- Speed of these adjustment margins also quantitatively important

IO linkages, sectoral heterogeneity crucial to quantify long-run impact of trade reforms

- Costinot and Rodríguez-Clare (2014), Caliendo and Parro (2015)
- Also significantly affect transition dynamics

This paper: quantitative evaluation with all of these elements

# What I do

## Build dynamic CGE model of NAFTA

- Multi-country, multi-sector, input-output structure
- Capital accumulation and endogenous trade imbalances
- Heterogeneous firms pay sunk costs to export
- Variety of other aggregate adjustment costs

Calibrate to match macro (input-output matrix) and micro (exporter dynamics) facts

Evaluate macroeconomic consequences of NAFTA termination

- What are short- and long-run effects for each country?
- What happens to regional trade imbalances?
- How do model ingredients affect extent and timing of losses?
- What would happen if NAFTA was replaced by something else?

# What I find

All three countries' welfare falls

- ▶ US: -0.04%
- ▶ Canada: -0.12%
- Mexico: -0.22%

Regional trade imbalances remain

- US trade deficit with Canada shrinks
- US trade deficit with Mexico grows

Transition dynamics important: long-run losses > dynamic losses

Dynamic ingredients effect LR results, not just timing transition

IO linkages, other "static" ingredients effect transition, not just LR

# Model

#### **Model: overview**

- 4 countries: US, Canada, Mexico, and rest of the world  $(i \in I)$ 
  - Representative households work, consume, invest, trade bonds
  - Governments levy import tariffs and rebate proceeds to households

5 sectors: agriculture, resources, cars, other mfg., services ( $s \in S$ )

- Roundabout production structure
- Firms pay large fixed cost to start exporting, smaller cost to continue

Dynamic adjustment margins:

- Investment and endogenous trade imbalances
- Sunk-cost exporter dynamics
- Import and factor adjustment costs
- Shape LR effects of trade policy changes as well as SR effects!

#### Model: households

Choose consumption,  $C_{i,t}$ , sectoral investment,  $(X_{i,t}^s)_{s \in S}$ , bonds,  $B_{i,t+1}$ , to maximize lifetime utility,

$$\sum_{t=0} \beta^t \frac{C_{i,t}^{1-\gamma}}{1-\gamma}$$

subject to budget constraints,

$$P_{i,t}^{c}C_{i,t} + \sum_{s \in S} P^{x}X_{i,t}^{s} + Q_{t}B_{i,t+1} = W_{i,t}\bar{L}_{i,t} + \sum_{s \in S} R_{i,t}K_{i,t}^{s} + \Pi_{i,t} + T_{i,t},$$

law of motion for sectoral capital,

$$K_{i,t+1}^{s} = (1 - \delta)K_{i,t}^{s} + X_{i,t}^{s}, s \in S,$$

and initial conditions for bonds,  $B_{i,0}$ , and sectoral capital,  $(K_{i,0}^s)_{s \in S}$ 

# Model: aggregation

Consumption, investment are aggregates of sectoral composites:

$$C_{i,t} = \left(\sum_{s \in S} \varepsilon_i^{c,s} \left(Z_{i,t}^{c,s}\right)^{\frac{\rho^c - 1}{\rho^c}}\right)^{\frac{\rho^c}{\rho^c - 1}}, \quad \sum_{s \in S} X_{i,t}^s = \left(\sum_{s \in S} \varepsilon_i^{x,s} \left(Z_{i,t}^{x,s}\right)^{\frac{\rho^x - 1}{\rho^x}}\right)^{\frac{\rho^x}{\rho^x - 1}}$$

Composites are bundles of domestic and imported varieties:

$$Y_{i,t}^{u,s} = \left[\sum_{j \in I} \mu_{i,j}^{u,s} \left(\int_{\Omega_{i,j,t}^s} y_{i,j,t}^{u,s}(\omega)^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}\frac{\zeta_i^s-1}{\zeta_i^s}}\right]^{\frac{\zeta_i^s}{\zeta_j^s-1}}$$

- Separate composites for final (u = f) and intermediate (u = m)
- $\Omega_{i,j,t}^s$ : set of *j*'s varieties available in *i*
- Demand curve for varieties:  $\tilde{y}_{i,j,t}^{u,s}(p) \propto (1 + \tau_{i,j,t}^{u,s})^{-\theta} p^{-\theta}$

#### **Model: firms**

Each (i, s) has unit measure of monopolistically competitive firms

No firm creation margin (yet!)

Heterogeneous in

- Productivity  $z \sim N(0, \sigma_i^s)$ , iid across firms and time
- Exporter status  $e_j \in \{0, 1\}$  for each  $j \in I \setminus \{i\}$

Selling domestically is free

Cost of exporting to j,  $\kappa_{i,j}^{s}(e_j)$ , depends on current status

Production technology (Atalay, 2017; Kehoe et al., 2018)

$$f_i^s(z,k,\ell,(m^r)_{r\in S}) = \exp(z) \times \min\left\{\frac{k^{\alpha}\ell^{1-\alpha}}{\lambda_i^{s,va}}, \min_{r\in S}\left[\frac{m^r}{\lambda_i^{s,r}}\right]\right\}$$

#### Model: firms

Static problem: conditional on having access to market j ( $e_j = 1$ ), choose prices and inputs to maximize profits in that market

$$\pi_{i,j,t}^{s}(z) = \max_{p^{f}, p^{m}, k, \ell, (m^{r})_{r \in S}} \left\{ \sum_{u \in \{m, f\}} p^{u} \tilde{y}_{j,i,t}^{u,s}(p^{u}) - W_{i,t}^{s} \ell - R_{i,t}^{s} k - \sum_{r \in S} P_{i,t}^{m,r} m^{r} \right\}$$
  
s.t. 
$$\sum_{u \in \{m, f\}} y_{j,i,t}^{u,s}(1 + \tilde{\zeta}_{j,i,t}^{s}) = f_{i}^{s}(z, k, \ell, (m^{r})_{r \in S})$$

Sell to both final and intermediate aggregators

CRS technology allows profit-maximization problem to be separated across destinations

#### Model: firms

Dynamic problem (also separable across destinations): given current export status  $e_i$ , choose new status  $e'_i$ 

$$V_{i,j,t}^{s}(z,e_{j}) = \max_{e_{j}'} \left\{ e_{j}' \pi_{i,j,t}^{s}(z) - W_{i,t} \kappa_{i,j}^{s}(e_{j}) + \Lambda_{i,t} \int_{-} V_{i,j,t}^{s}(z',e_{j}') \, \mathrm{d}F_{i}^{s}(z') \right\}$$

Characterized by entry and exit cutoffs:

• 
$$z > \underline{z}_{i,j,t}^s$$
: enter

•  $z < \bar{z}_{i,j,t}^s$ : exit

Bilateral export participation rate evolves according to

$$\Omega_{j,i,t}^{s} = \left(1 - F_{i}^{s}(\bar{z}_{i,j,t}^{s})\right)\Omega_{j,i,t-1}^{s} + \left(1 - F_{i}^{s}(\underline{z}_{i,j,t}^{s})\right)\left(1 - \Omega_{j,i,t-1}^{s}\right)$$

#### Model: adjustment costs

Reduced-form, quadratic adjustment costs in addition to micro-founded trade dynamics

- Sectoral capital, K<sup>s</sup><sub>i,t</sub>, and labor, L<sup>s</sup><sub>i,t</sub>
- Bundles of imported varieties:  $Y_{i,j,t}^{u,s} \equiv \left(\int y_{i,j,t}^{u,s}(\omega)^{(\theta-1)/\theta}\right)^{\theta/(\theta-1)}$

All denominated in units of labor:

$$\begin{split} \bar{L}_{i} &= \sum_{s \in S} \left\{ L_{i,t}^{s} + \sum_{j \in I \setminus \{i\}} \left[ \left( 1 - F_{i}^{s}(\bar{z}_{i,j,t}^{s}) \right) \Omega_{j,i,t-1}^{s} \kappa_{i,j}^{s}(1) + \left( 1 - F_{i}^{s}(\bar{z}_{i,j,t}^{s}) \right) \left( 1 - \Omega_{j,i,t-1}^{s}) \kappa_{i}^{s}(0) \right] \right) \\ &+ \eta_{L} \left( \frac{L_{i,t}^{s}}{L_{i,t-1}^{s}} - 1 \right)^{2} L_{i,t-1}^{s} + \eta_{K} \left( \frac{K_{i,t}^{s}}{K_{i,t-1}^{s}} - 1 \right)^{2} K_{i,t-1}^{s} + \eta_{M} \sum_{\substack{j \in I \setminus \{i\}\\ u \in \{m,f\}}} \left( \frac{Y_{i,j,t}^{u,s}}{Y_{i,j,t-1}^{u,s}} - 1 \right)^{2} Y_{i,j,t-1}^{u,s} \right\} \end{split}$$

Competitive intermediaries rent factors from households to firms; arbitrage condition pins down sector-specific factor prices

Armington aggregators also solve dynamic optimization problem

# Model: equilibrium

Sequence of objects that satisfies optimality, market clearing

- Aggregates: macro and sector-level quantities and prices
- Firm-level: value functions, cutoffs, export participation rates

Construct two equilibria with different trade costs

- Benchmark: constant at NAFTA levels forever
- Termination: increase unexpectedly in 2019 (period 0 = 2014)

Given LR trade costs, infinite number of possible steady states

- Initial conditions, bond market access, adjustment costs, etc. determine steady state to which equilibrium converges
- Altering these assumptions/parameterizations affects long-run as well as short run!

# Calibration

# **Calibration: overview**

- 1. Assign initial conditions, elasticities, other common parameters
- 2. Calibrate expenditure shares to match WIOD input-output matrix
- 3. Calibrate exporting costs, productivity distributions to match exporter dynamics facts from literature
- 4. Set termination equilibrium trade costs using MFN tariffs

## **Calibration: assigned parameters**

Standard values for common parameters ( $\beta$ ,  $\psi$ ,  $\alpha$ ,  $\delta$ ,  $\rho^c$ ,  $\rho^x$ ,  $\gamma$ )

Initial conditions for bonds and capital taken directly from data

Factor adj. costs  $\eta_K$ ,  $\eta_L$  set to 10 (Kehoe and Ruhl, 2008)

Import adj. cost  $\eta_M$  chosen so that 1-year trade elasticity is 1

Armington elasticities  $\zeta_i^s$  based on Caliendo and Parro (2015):

| Sector      | Elasticity |
|-------------|------------|
| Agriculture | 8.11       |
| Resources   | 31.82      |
| Vehicles    | 0.88       |
| Other mfg.  | 5.17       |
| Services    | 5.00       |

# **Calibration: expenditure shares**

Expenditure shares  $(\lambda_i^{s,v}, \lambda_i^{s,r}, \mu_{i,j}^{u,s}, \varepsilon_i^{x,s}, \varepsilon_i^{c,s})$  chosen so that first period of benchmark equilibrium replicates input-output matrix

Source: World Input Output Database (WIOD)

- Widely used in quantitative trade studies
- Summarizes production, intermediate inputs, and final demand for 43 countries and 56 2-digit ISIC industries
- Data for 2014: latest available, but several years before Trump's election (and NAFTA termination) thought possible
- Aggregate non-NAFTA countries into single "rest of the world,", industries into 5 broad sectors

Trade costs set to zero in benchmark:  $\mu_{i,j}^{u,s}$  absorb all trade costs with ROW, and iceberg costs between NAFTA countries

## **Calibration: exporting costs + productivity distributions**

Jointly calibrate exporting costs  $\kappa_{i,j}^s(0)$ ,  $\kappa_{i,j}^s(1)$  and productivity dispersions  $\sigma_i^s$  to match

- Export participation rate = 25% (Alessandria et al. 2014)
- Bilateral exporter exit rate = 45% (Steinberg, 2019)
- Top 5% share of bilateral exports = 58% (Steinberg, 2019)

Summary of results (200+ jointly calibrated parameters):

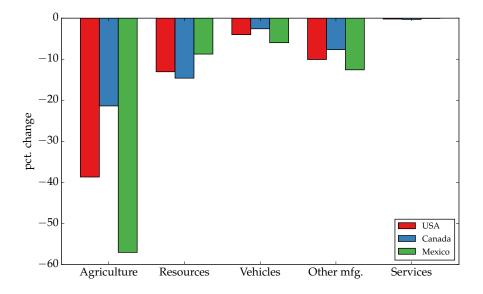
- $\sigma_i^s \approx 0.6$
- $\kappa_{i,j}^{s}(0) \approx 4 \times \kappa_{i,j}^{s}(1)$

Ongoing issues:

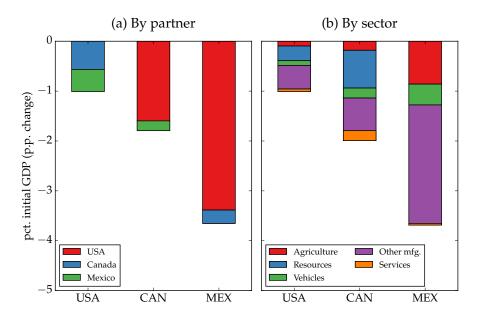
- Assume no export costs in oil sector (high Armington elasticity makes sunk-cost model numerically intractable)
- Same moments for all countries and sectors; (country, sector)-specific moments in progress

## Calibration: termination equilibrium tariffs

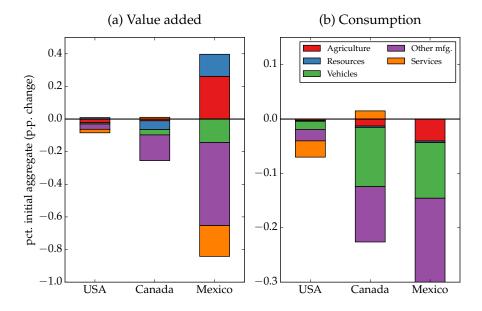
Based on MFN tariff schedules for 6-digit HS industries


Aggregate to 5 sectors weighting by imports from COMTRADE

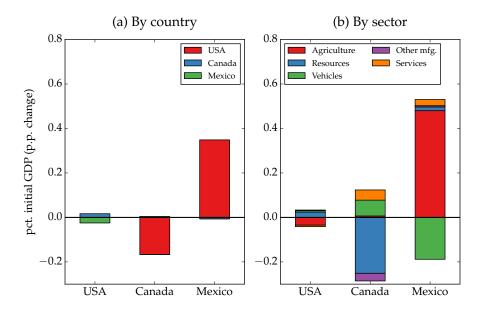
Changes in tariffs after NAFTA termination (p.p.):


| Partner           | Agriculture | Resources | Cars  | Other mfg. | Total |
|-------------------|-------------|-----------|-------|------------|-------|
| (a) United States |             |           |       |            |       |
| Canada            | 1.74        | 0.74      | 2.30  | 1.79       | 1.51  |
| Mexico            | 3.19        | 0.52      | 7.75  | 1.76       | 3.14  |
| (b) Canada        |             |           |       |            |       |
| United States     | 3.28        | 0.61      | 4.55  | 1.55       | 2.14  |
| Mexico            | 0.57        | 0.38      | 5.20  | 1.47       | 2.56  |
| (c) Mexico        |             |           |       |            |       |
| United States     | 29.18       | 0.18      | 7.62  | 3.65       | 5.40  |
| Canada            | 13.29       | 0.08      | 12.22 | 2.97       | 6.19  |

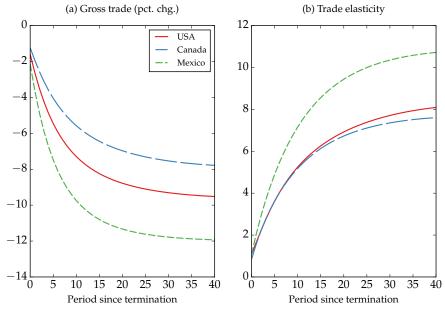
# Results


## Long-run results: gross NAFTA trade volumes




#### Long-run results: NAFTA trade




#### Long-run results: output and consumption



#### Long-run results: NAFTA trade balances



#### **Dynamic results: NAFTA trade**



# Dynamic results: macro aggregates



### **Results: welfare**

| Country | LR Cons. (% chg.) | Welfare (% chg.) | Ratio |
|---------|-------------------|------------------|-------|
| USA     | -0.050            | -0.043           | 0.866 |
| CAN     | -0.131            | -0.124           | 0.949 |
| MEX     | -0.254            | -0.222           | 0.863 |

NAFTA termination hurts all 3 countries, but Mexico loses most

Transition dynamics reduce welfare losses by 5-16%

Q: What drives differences between SR and LR welfare?

Q: What would happen if NAFTA was replaced by something else?

Q: How (and why) do results differ from previous estimates of welfare effects of NAFTA implementation?

# What drives transition dynamics?

# Transitions: dynamic adjustment margins

|                       | LR     | LR cons. loss (%) |        |       | Welfare loss (% LR loss) |       |  |
|-----------------------|--------|-------------------|--------|-------|--------------------------|-------|--|
| Model                 | USA    | CAN               | MEX    | USA   | CAN                      | MEX   |  |
| Baseline              | -0.050 | -0.132            | -0.256 | 0.859 | 0.944                    | 0.857 |  |
| No capital adj. costs | -0.062 | -0.140            | -0.253 | 0.808 | 0.941                    | 0.910 |  |
| No import adj. costs  | -0.054 | -0.137            | -0.294 | 0.849 | 0.939                    | 0.815 |  |
| Fixed trade balances  | -0.062 | -0.175            | -0.293 | 0.683 | 0.640                    | 0.714 |  |
| Const. trade balances | -0.072 | -0.200            | -0.309 | 1.430 | 0.630                    | 0.741 |  |
| Static exporting      | -0.050 | -0.124            | -0.248 | 0.833 | 0.937                    | 0.850 |  |
| No export costs       | -0.050 | -0.122            | -0.239 | 0.831 | 0.934                    | 0.844 |  |

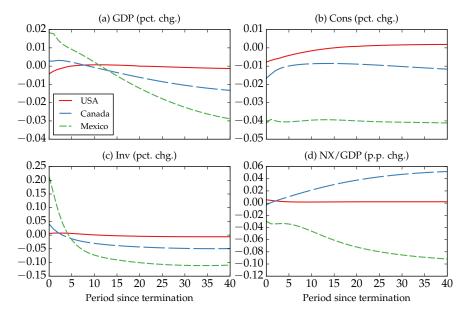
*K* accumulation, bond trading alter extent and timing of welfare effects (Brooks and Pujolas, 2018; Ravikumar et al., 2018)

Speed of adjustments also matter

Extensive-margin dynamics affect LR more than SR

# Transitions: dynamic effects of other ingredients

|                    | LR     | LR cons. loss (%) |        |       | e loss (% L | R loss) |
|--------------------|--------|-------------------|--------|-------|-------------|---------|
| Model              | USA    | CAN               | MEX    | USA   | CAN         | MEX     |
| Baseline           | -0.050 | -0.132            | -0.256 | 0.859 | 0.944       | 0.857   |
| No IO linkages     | 0.002  | -0.012            | -0.041 | 0.129 | 0.919       | 0.996   |
| Cobb-Douglas prod. | -0.085 | -0.284            | -0.481 | 0.888 | 0.971       | 0.943   |
| Cobb-Douglas cons. | -0.030 | -0.110            | -0.255 | 1.195 | 1.224       | 0.898   |


IO linkages important drivers of LR welfare effects (Caliendo and Parro, 2015; Giri et al. 2018)

IO structure also affects welfare timing

Complementarities, too, affect LR and SR welfare

Mechanism: alter households' ability to use investment, trade imbalances to smooth consumption

#### Transitions: macro dynamics without IO linkages



# **Other post-NAFTA scenarios**

# Other scenarios: welfare results

|                                                           | LR                        | LR cons. loss (%)          |                            |                         | Welfare loss (% LR loss) |                         |  |
|-----------------------------------------------------------|---------------------------|----------------------------|----------------------------|-------------------------|--------------------------|-------------------------|--|
| Model                                                     | USA                       | CAN                        | MEX                        | USA                     | CAN                      | MEX                     |  |
| Baseline                                                  | -0.050                    | -0.132                     | -0.256                     | 0.859                   | 0.944                    | 0.857                   |  |
| Higher U.S. tariffs<br>US-Canada FTA<br>Canada-Mexico FTA | 0.059<br>-0.035<br>-0.049 | -0.350<br>-0.023<br>-0.119 | -0.521<br>-0.262<br>-0.235 | 1.200<br>0.875<br>0.862 | 0.925<br>0.766<br>0.942  | 0.869<br>0.871<br>0.856 |  |
| NAFTA + stricter DCR                                      | -0.038                    | -0.064                     | -0.066                     | 0.810                   | 0.858                    | 0.871                   |  |

NAFTA termination worse for Canada, Mexico if, in addition, US becomes unilaterally more protectionist

FTA with US would mitigate most harm for Canada or Mexico, but Canada-Mexico FTA would have little effect

Keeping NAFTA but strengthening domestic content requirements makes all members worse off

# **Comparison to other studies**

# **Comparison to other studies**

|                                                                               | LR                                   | LR cons. loss (%)                   |                                      |                                  | Welfare loss (% LR loss)         |                                  |  |
|-------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|--|
| Model                                                                         | USA                                  | CAN                                 | MEX                                  | USA                              | CAN                              | MEX                              |  |
| Baseline                                                                      | -0.050                               | -0.132                              | -0.256                               | 0.859                            | 0.944                            | 0.857                            |  |
| Cobb-Douglas prod.<br>Const. trade balances<br>Pre-NAFTA tariffs<br>All three | -0.085<br>-0.072<br>-0.126<br>-0.267 | -0.284<br>-0.200<br>0.058<br>-0.139 | -0.481<br>-0.309<br>-0.334<br>-1.075 | 0.888<br>1.430<br>0.933<br>1.987 | 0.971<br>0.630<br>1.139<br>0.176 | 0.943<br>0.741<br>0.879<br>0.795 |  |

Results differ from Caliendo and Parro (2015) estimates

- ► Canada: 0.12% vs. -0.08%
- Mexico: 0.22% vs. 1.31%

Differences driven by: (i) production complementarities (ii) bond-market access; (iii) pre-NAFTA tariffs vs. current MFN tariffs

Changes in production structure, K accumulation also matter

## Summary

Used dynamic GE model to quantify macroeconomic effects of NAFTA termination

- Multi-sector, input-output production structure
- Investment, int'l K flows, extensive-margin dynamics, adj. costs

Main findings:

- Termination hurts all NAFTA members
- Does not rebalance regional trade

Broader lessons for dynamic trade analysis:

- Dynamic ingredients have long-run effects
- IO linkages, other static ingredients have dynamic effects